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1. Introduction: In 1922, Banach gave a principle to obtain the fixed point in the 

complete metric space. Since then, many researchers have worked on the Banach fixed 

point theorem (see [1-9], [11-22]) and tried to generalize this principle. In 2012, Samet 

et al. [23] introduced the new concepts of mappings called �-admissible mappings in 

metric space. Recently, in 2013 Farhan et al. [2] gave new contractions using �- 

admissible mapping in metric spaces. 

In this paper, we shall generalize Farhan’s et al. [2] contractions and give fixed point 

theorems for such contractions. 

2. Preliminaries: To prove our main results we need some basic definitions from 

literature as follows: 

Definition 2.1. [10] Let � be a set. A rectangular metric space (RMS) is an ordered pair (�, �) 

where � is a function � ∶ � × � → ℝ such that 

 
(1) (
, �) ≥ 0, 

(2) (
, �) = 0 iff 
 = �, 

(3) (
, �) = �(�, 
), 

(4) (
, �) ≤ �(
, �) + �(�, �) + �(�, �). 

 
For all 
, �, �, � ∈  . 

 
Definition 2.2. [10] A sequence {
n} in RMS (�, �) is said to converge if there is a point 
 ∈ 

� and for every ∈ > 0 there exists � ∈ ℕ such that �(
n, 
) < ∈ for every � > �. 
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Definition 2.3. [10] A sequence {
n} in a RMS (�, �) is Cauchy if for every ∈ > 0 there 

exists � ∈ ℕ such that (
n, 
m) < ∈ for every �, ! > �. 

Definition 2.4. [10] RMS (�, �) is said to be complete if every Cauchy sequence is convergent. 

 
Definition 2.5. [23] Let ": � → � and �: � × � → [0, ∞). We say that " is an � −admissible 

mapping if 

(
, �) ≥ 1 implies �("
, "�) ≥ 1, 
, � ∈ �. 

3. Main Results: 

Theorem 3.1. Let (�, �) be a complete RMS and (: � → � be an � − admissible mapping. 

Assume that there exists a function ): [0, ∞) → [0, 1] such that, for any bounded sequence {+n} 

of positive reals, (+n) → 1 implies +n → 0 and 

(�((
, (�) +  ,)α(x,Tx)α(y,Ty) ≤  )(1(
, �))1(
, �) +  ,, ∀ 
, �  ∈ � and ,  ≥ 1. (3.1) 

 
Where 1(
, �) = max {�(
, �), �(
, (
), �(�, (�), 

d(x,Tx).d(Ty,y) 
,  

d(x,Tx)(1+d(Ty,y))
} 

d(x,y) 1+d(x,y) 

 

Suppose that if ( is continuous and 

 
If there exists 
0 ∈ � such that (
0, (
0) ≥ 1, then ( has a fixed point. 

Proof: Let 
0 ∈ � such that (
0, (
0) ≥ 1. Construct a sequence {
n} in � as 
n+1 = (
n, 

∀ � ∈ �. 

If 
n+1 = 
n, for some � ∈ �, then (
n = 
n and we are done. 

So, we suppose that (
n, 
n+1) > 0, ∀ � ∈ �. 

Since ( is � −admissible, there exists 
0 ∈ � such that (
0, (
0) ≥ 1   which implies 

(
0, 
1) ≥ 1. 

Similarly, we can say that (
1, 
2) = �((
0, (2
0) ≥ 1. 

By continuing this process, we get 

(
n, 
n+1) ≥ 1, ∀ � ∈ �. (3.2) 

By using equation (3.2), we have 

�(
n, 
n+1) + , = �((
n–1, (
n) + , ≤ (�((
n–1, (
n) + ,)α(xn—1,Txn—1)α(xn,Txn). 

Now using equation (3.1), we get 

�(
n, 
n+1) +  ,  ≤  )(1(
n–1, 
n))1(
n–1, 
n) +  , , (3.3) 

(
n–1 , 
n ) = max{�(
n–1 , 
n ), (
n–1 , (
n–1 ), (
n , (
n ), 
d(xn—1,Txn—1).d(Txn,xn)   

,
 

d(xn—1,xn) 

d(xn—1,Txn—1)(1+d(Txn,xn)) 

1+d(xn—1,xn) 
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= max {(
n–1, 
n), �(
n–1, 
n), �(
n, 
n+1)}, 

Assume that if possible �(
n, 
n+1) > �(
n–1, 
n). 

Then, (
n–1, 
n) = �(
n, 
n+1). Using 

this in equation (3.3), we get 

(
n, 
n+1) <   )(�(
n, 
n+1))�(
n, 
n+1) (3.4) 

 
⇒ (
n, 
n+1) < �(
n, 
n+1) , which is a contradiction. So 

(
n, 
n+1) ≤ �(
n–1, 
n), ∀ �. 

It follows that the sequence {(
n, 
n+1)} is a monotonically decreasing sequence of positive 

real numbers. So, it is convergent and suppose that lim 
n → ∞ 

(
n, 
n+1) = �. Clearly, � ≥ 0. 

 

Claim: � = 0. 

 
Equation (3.4) implies that 

 

d(xn,xn+1) 

d(xn—1,xn) 
≤  (�(
n–1 , 
n ) ≤ 1, 

 

Which implies that lim 
n → ∞ 

(�(
n–1, 
n)  = 1. 

 

Using the property of the function ), we conclude that 
 

lim 
n → ∞ 

(
n, 
n+1) = 0. (3.5) 

 

In the similar way, we can prove that 
 

lim 
n → ∞ 

(
n, 
n+2) = 0. (3.6) 

 

Now, we will show that {
n} is a Cauchy sequence. Suppose, to the contrary that {
n} is not a 

Cauchy sequence. Then there exists ∈ > 0 and sequences (;) and �(;) such that for all 

positive integers ;, we have 

�(;) >   !(;) >  ;, �(
n(k), 
m(k)) ≥ ∈ and �(
n(k), 
m(k)–1) < ∈. 

 
By the triangle inequality, we have 

 
∈ ≤ �(
n(k), 
m(k)) ≤ �(
n(k), 
m(k)–1) +  �(
m(k)–1, 
m(k)+1) + �(
m(k)–1, 
m(k)) 

 
< ∈  + �(
m(k)–1, 
m(k)+1) + �(
m(k)–1, 
m(k)), 
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n(k)–1 ( )

 )m k –1 

for all ; ∈ ℕ. 

 
Taking the limit as ; → +∞ in the above inequality and using equations (3.5) and (3.6), we 

get 

lim 
k → +∞ 

(
n(k), 
m(k)) = ∈. (3.7) 

 

Again, by triangle inequality, we have 

 
�(
n(k), 
m(k)) − �(
m(k)–1, 
m(k)) − �(
n(k)–1, 
n(k)) ≤  �(
n(k)–1, 
m(k)–1) 

 
�(
n(k)–1, 
m(k)–1) ≤ �(
m(k), 
m(k)–1) +   �(
n(k), 
m(k)) +   �(
n(k)–1, 
n(k)). 

 
Taking the limit as ; → +∞, together with (3.5) - (3.7), we deduce that 

 

lim 
k → +∞ 

(
n(k)–1, 
m(k)–1) = ∈. (3.8) 

 

From equations (3.1), (3.2), (3.6) and (3.8), we get 

 
�(
n(k), 
m(k)) + ,  ≤  (�(
n(k), 
m(k)) +  ,)α(xn(k)—1,Txn(k)—1)α(xm(k)—1,Txm(k)—1)  , 

 

= (�((
 , (
 ) + ,  
α(xn(k)—1,Txn(k)—1)α(xm(k)—1,Txm(k)—1) 

 
≤   (1(
n(k)–1, 
m(k)–1)1(
n(k)–1, 
m(k)–1) +  , (3.9) 

 
1(
n(k)–1, 
m(k)–1)  =    max {�(
n(k)–1, 
m(k)–1), �(
n(k)–1, 
n(k)), �(
m(k)–1, 
m(k)), 

d(xn(k)—1,Txn(k)—1).d(Txm(k)—1,xm(k)—1) 
,   

d(xn(k)—1,Txn(k)—1)(1+d(Txm(k)—1,xm(k)—1)) 

d(xn(k)—1,xm(k)—1) 1+d(xn(k)—1,xm(k)—1) 

 

=   max {(
n(k)–1, 
m(k)–1), �(
n(k)–1, 
n(k)), �(
m(k)–1, 
m(k)), 

d(xn(k)—1,xn(k)).d(xm(k)—1,xm(k))  
,    

d(xn(k),xn(k)—1)(1+d(xm(k)—1,xm(k)))
}.

 
d(xn(k)—1,xm(k)—1) 1+d(xn(k)—1,xm(k)—1) 

 

Taking ; → ∞ , we have 

 
(
n(k)–1, 
m(k)–1) = max {∈, 0, 0, 0, 0 }. So, 

equation (3.9) implies that 

�(
n(k)+1, 
m(k)+1) ≤ )(1(
n(k), 
m(k))1(
n(k), 
m(k)) ≤ 1 , 

Letting ; → ∞, we get 
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lim  (�(
n(k), 
m(k)) = 1. 
k →∞ 

 

By using definition of ) function, we get 

 
⇒ lim �( 
n(k), 
m(k)) = 0 < ∈, which is a contradiction. 

k→∞ 

 

Hence, {
n} is a Cauchy sequence. 

 

Since (�, �) is a complete space, so {
n} is convergent and assume that 
n → 
 as � → ∞. 

 

Since ( is continuous, then we have 
 

(
 = lim 
n → ∞ 

(
n =   lim 
n → ∞ 


n+1 = 
. 

 

So, 
 is a fixed point of (. 

 
Theorem 3.2. Assume that all the hypothesis of Theorem 3.1 hold. Adding the following 

condition: 

If 
 = (
, then (
, (
) ≥ 1. 

 
We obtain the uniqueness of fixed point. 

 
Proof: Let = and =∗ be two distinct fixed point of ( in the setting of Theorem 3.1 and above 

defined condition holds, then 

(=, (=) ≥ 1 and �(=∗, (=∗) ≥ 1. 

 

So, �((=, (=∗) + ,  ≤  (�((=, (=∗) +  ,)α(z,Tz)α(z
∗,Tz∗)

 

 
≤   )(1(=, =∗))1(=, =∗) + ,. (3.10) 

 
Where 1(=, =∗) =   max {�(=, =∗), �((=, =), �((=∗, =), , 

d(z,Tz).d(T z∗,z∗) 
,   

d(z,Tz)(1+d(T z∗,z∗))
 

d(z,z∗) 
1+d(z,z∗) 

}
 

= �(=, =∗). 

 
So, equation (3.10) implies 

 
�(=, =∗) =   �((=, (=∗) ≤   )(�(=, =∗))�(=, =∗) 

 
⇒ (�(=, =∗)) = 1 

 
⇒ (=, =∗) = 0 ⇒ = = =∗. 
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Corollary 3.3.(Farhan et al. [2]) Let (�, �) be a complete RMS and ( ∶ � → � be an 

� −admissible mapping. Assume that there exists a function ): [0, ∞) → [0, 1] such that, for 

any bounded sequence {+n} of positive reals, (+n) → 1 implies +n → 0 and 

(�((
, (�) + ,)α(x,Tx)α(y,Ty)   ≤   )(�(
, �))�(
, �) + , 

 
for all 
, � ∈ � where , ≥ 1. Suppose that if ( is continuous and there exists 
0 ∈ � such that 

(
0, (
0) ≥ 1, then " has a fixed point. 

 

Proof: Taking (
, �) = �(
, �) in Theorem 3.1, one can get the proof. 

 
Corollary 3.4. (Farhan et al.[2]) Assume that all the hypotheses of Corollary 3.3 hold. Adding 

the following condition: 

(a) If 
 = (
, then (
, (
) ≥ 1, 

 
we obtain the uniqueness of the fixed point of (. 

Proof: Taking (
, �) = �(
, �) in Corollary 3.3. 
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