Home » A New Compact UWB Microstrip BPF for Wireless Communication Using DGS

A New Compact UWB Microstrip BPF for Wireless Communication Using DGS

Advertisements

Tasher Ali Sheikh
tasher372@gmail.com
North Eastern Regional Institute Of Science And Technology, India
Janmoni Borah
borah1989@gmail.com
North Eastern Regional Institute of Science And Technology, India

Abstract

A novel compact ultra-wide band microstrip band-pass filter has proposed in this paper for the application of wireless communication systems. By using DGS, desired UWB microstrip BPF has designed. The designed filter has maintained lesser insertion loss, high selectivity, and very good return loss. The proposed pass band filter has guaranteed the sharpness of skirts of the parameters because of appearances of transmission zero near the each pass band edges. The presences of three poles at the pass band in the designed UWB BPF could scale up the bandwidth and enhanced the selectivity. At 6 GHz center frequencies, the 3dB fractional bandwidth is 56.07%. The simulated values of the insertion loss and return loss of the proposed filter are -0.0184dB and -43.84dB respectively. The Ansoft high-frequency structural simulator has used for the frequency response of the designed filter.

Keywords

Bandpass filter (BPF);
Ultra wideband (UWB);
Defected ground structure (DGS);
Fractional Bandwidth (FBW);
Insertion loss;
Return loss;
Group delay

download pdf

Cited as

Tasher Ali Sheikh and Janmoni Borah “A Compact UWB Microstrip BPF for Wireless Communication Using DGS,  International Journal of Advanced Engineering and Management, Vol. 2, No. 7, pp. 168-171,  2017.  DOI: https://doi.org/10.24999/IJOAEM/02070038                                                                                                                                                                                             

 References

  1. Maichalernnukul, K., Zheng, F., & Kaiser, T. (2010, March). UWB MIMO cooperative relay systems: BER analysis and relay regions. InInformation Sciences and Systems (CISS), 2010 44th Annual Conference on (pp. 1-6). IEEE.
  2. Sheikh, T. A., Borah, J., & Roy, S. (2014). Bandwidth improvement in BPF using microstrip couple lines.ICSSP14, 105-109. DOI: 13140/2.1.3254.6881
  3. Sheikh, T. A., Borah, J., Roy, S., & Pandey, A. K. (2016). A New Compact Dual Band Microstrip BPF for GSM (1.8 GHz) and WiMAX Using Asymmetric Stepped Impedance Resonators. InProceedings of the International Conference on Recent Cognizance in Wireless Communication & Image Processing (pp. 581-587). Springer India.DOI: 1007/978-81-322-2638-3_65.
  4. Sheikh, T. A., Borah, J., & Roy, S. (2015). Miniaturized Tri-Band BPF using Asymmetric SIRs and DGS.International Journal of Signal processing, Image processing and pattern recognition (IJSIP)8(2), 337-346. DOI: 14257/ijsip.2015.8.2.32.
  5. Sheikh, T. A., Borah, J., & Roy, S. (2016). Design of compact bandpass filter for WiMAX and UWB application using asymmetric SIRs and DGS.Radioelectronics and Communications Systems59(6), 269-273. DOI: 3103/S0735272716060066.
  6. Hong, J.-S. and Lancaster, M. J. (2001) Case Study for Mobile Communications Applications, in Microstrip Filters for RF/Microwave Applications, John Wiley & Sons, Inc., New York, USA. doi: 10.1002/0471221619.ch12
  7. Chen, W. Y., Weng, M. H., Chang, S. J., Kuan, H., & Su, Y. H. (2012). A new tri-band bandpass filter for GSM, WiMAX and ultra-wideband responses by using asymmetric stepped impedance resonators.Progress In Electromagnetics Research124, 365-381. DOI: 2528/PIER11122010
  8. Kuo, T. N., Wang, C. H., & Chen, C. H. (2007). A compact ultra-wideband bandpass filter based on split-mode resonator.IEEE Microwave and Wireless Components Letters17(12), 852-854.DOI: 1109/LMWC.2007.910483
  9. Shaman, H., & Hong, J. S. (2007). A novel ultra-wideband (UWB) bandpass filter (BPF) with pairs of transmission zeroes.IEEE Microwave and Wireless Components Letters17(2), 121-123. DOI: 1109/LMWC.2006.890335
  10. Xu, J., Niu, Y., Cui, L., Miao, C., & Wu, W. (2012). Analytical design of a microstrip UWB BPF with sharp rejection.Journal of Electronics (China)29(5), 451-455. DOI: 1007/s11767-012-0830-y
  11. Pirani, S., Nourinia, J., & Ghobadi, C. (2010). Band-notched UWB BPF design using parasitic coupled line.IEEE Microwave and Wireless Components Letters20(8), 444-446..DOI: 1109/LMWC.2010.2049830.
  12. Lin, T., Long, J., & Guo-qing, Y. (2011, October). A compact ultra-wideband (UWB) bandpass filter using microstrip T-shaped stub. InComputational Problem-Solving (ICCP), 2011 International Conference on (pp. 382-384). IEEE. DOI: 1109/ICCPS.2011.6092235
  13. Feng, W. J., & Che, W. Q. (2011). Ultra-wideband bandpass filter using broadband planar Marchand balun.Electronics Letters47(3), 198-199. DOI: 1049/el.2010.7282
  14. Abbosh, A. M. (2012). Design method for ultra-wideband bandpass filter with wide stopband using parallel-coupled microstrip lines.IEEE Transactions on Microwave Theory and Techniques60(1), 31-38. DOI: 1109/TMTT.2011.2175241
  15. Feng, W. J., Che, W. Q., & Eibert, T. F. (2011). Ultra-wideband bandpass filter based on transversal signal-interaction concepts.Electronics letters47(24), 1330-1331. DOI:1049/el.2011.2658.
  16. Duong, T. H., & Kim, I. S. (2010). Steeply sloped UWB bandpass filter based on stub-loaded resonator.IEEE microwave and wireless components letters20(8), 441-443. DOI: 1109/LMWC.2010.2049480
  17. Wu, H. W., Chen, Y. W., & Chen, Y. F. (2012). New ultra-wideband (UWB) bandpass filter using triangle-ring multi-mode stub-loaded resonator.Microelectronics Journal43(11), 857-862. DOI: 1016/j.mejo.2012.06.005.

steakhouse-1

Advertisements
%d bloggers like this: