Home » Design Optimization of Axial Flow Fan

Design Optimization of Axial Flow Fan


Azeem Mustafa
Mechanical and Power Engineering
Harbin University of Science and Technology
Harbin University of Science and Technology, P.R. China
Lu Yiping
Mechanical and Power Engineering
Harbin University of Science and Technology, P.R. China
Feng Mingpeng
Mechanical and Power Engineering
Harbin University of Science and Technology, P.R. China


Axial flow fan occupies an important role in many industrial applications. In this paper, the computational fluid dynamics (CFD) modeling of the axial flow fan of the 7500 kW air-cooled motor is presented. The numerical simulations are performed to analyze the effect of installation angle, pressure variations and the number of blades on the performance of axial flow fan using ANSYS Fluent 16.0. Based on finite volume method, three-dimensional turbulent flow equations are numerically solved. The results show that the volumetric flow rate and efficiency of the axial flow fan are higher when the installation angle is 30° and blades of the fan are 19. Furthermore, volumetric flow rate decreases with the increase in outlet pressure and vice versa. This paper could provide an insightful understanding for the design optimization of axial flow fan and be helpful in designing a fan to improve the overall cooling performance of the systems.


Axial flow fan;
Computational fluid dynamics;
Design optimization;
Installation angle;
Mesh generation.

Cited as

Azeem Mustafa, Lu Yiping and Feng Mingpeng,Design Optimization of Axial Flow Fan,” International Journal of Advanced Engineering and Management, 3(1): 1-7, 2018

DOI: 10.24999/IJOAEM/03010001

download pdf


  1. Li, Z., Jin, Y., Huashu, D., & Yuzhen, J. (2013). Numerical and experimental investigation on aerodynamic performance of small axial flow fan with hollow blade root. Journal of Thermal Science22(5), 424-432.
  2. Bizjan, B., Milavec, M., Širok, B., Trenc, F., & Hočevar, M. (2016). Energy dissipation in the blade tip region of an axial fan. Journal of Sound and Vibration382, 63-72.
  3. Sarraf, C., Nouri, H., Ravelet, F., & Bakir, F. (2011). Experimental study of blade thickness effects on the overall and local performances of a Controlled Vortex Designed axial-flow fan. Experimental Thermal and Fluid Science35(4), 684-693.
  4. Ye, X., Ding, X., Zhang, J., & Li, C. (2017). Numerical simulation of pressure pulsation and transient flow field in an axial flow fan. Energy129, 185-200.
  5. Panigrahi, D. C., & Mishra, D. P. (2014). CFD Simulations for the Selection of an Appropriate Blade Profile for Improving Energy Efficiency in Axial Flow Mine Ventilation Fans. Journal of Sustainable Mining13(1), 15-21.
  6. Hurault, J., Kouidri, S., & Bakir, F. (2012). Experimental investigations on the wall pressure measurement on the blade of axial flow fans. Experimental Thermal and Fluid Science,40, 29-37.
  7. Nakahama, T., & Ishibashi, F. (2004). Analysis and visualization of flow around blades of axial fans for large capacity open-type motors. IEE Proceedings – Electric Power Applications151(1), 70.
  8. LI, Y., Liu, J., Ouyang, H., & Du, Z. (2008). Internal flow mechanism and experimental research of low-pressure axial fan with forward-skewed blades. Journal of Hydrodynamics, Ser. B20(3), 299-305.
  9. Chu, S. L., Yu, G. S., Qin, R. H., & Cheng, C. (2009, December). The numerical simulation of internal three-dimensional flow in the axial-flow fire-fighting fan. In Test and Measurement, 2009. ICTM’09. International Conference on(Vol. 2, pp. 351-354). IEEE.
  10. Sayma A. (2017). Computational Fluid Dynamics. Abdulnaser Sayma & Ventus Publishing Aps.
  11. Menon, K. G., & Patnaikuni, V. S. (2017). CFD simulation of fuel reactor for chemical looping combustion of Indian coal. Fuel203, 90-101.
  12. Abdel-Fattah, A., Fateen, S. K., Moustafa, T. M., & Fouad, M. M. (2016). Three-dimensional CFD simulation of industrial Claus reactors. Chemical Engineering Research and Design112, 78-87.
  13. Liu, N., Wang, W., Wang, Y., Wang, Z., Han, J., Wu, C., & Gong, J. (2017). Comparison of turbulent flow characteristics of liquid-liquid dispersed flow between CFD simulations and direct measurements with particle image velocimetry. Applied Thermal Engineering125, 1209-1217.
  14. Huang, M., Gowdagiri, S., Cesari, X. M., & Oehlschlaeger, M. A. (2016). Diesel engine CFD simulations: Influence of fuel variability on ignition delay. Fuel181, 170-177.
  15. Lu, Y., Liu, L., & Zhang, D. (2015). Simulation and Analysis of Thermal Fields of Rotor Multislots for Nonsalient-Pole Motor. IEEE Transactions on Industrial Electronics,62(12), 7678-7686.
  16. Hassan, A., & Abomoharam, M. (2017). Modeling and design optimization of a robot gripper mechanism. Robotics and Computer-Integrated Manufacturing46, 94-103.
  17. Jahan, S. A., Wu, T., Zhang, Y., Zhang, J., Tovar, A., & Elmounayri, H. (2017). Thermo-mechanical Design Optimization of Conformal Cooling Channels using Design of Experiments Approach. Procedia Manufacturing10, 898-911.
  18. Si, B., Tian, Z., Jin, X., Zhou, X., Tang, P., & Shi, X. (2016). Performance indices and evaluation of algorithms in building energy efficient design optimization. Energy114, 100-112.
  19. Schayes, C., Vogt, J., Bouquerel, J., & Palleschi, F. (2015). Rotor Design Optimisation through Low Cycle Fatigue Testing. Procedia Engineering133, 233-243.
  20. Ansys Fluent 16.0 Theory Guide (2016).
  21. Monroe, C (1997). Maximizing Fan Performance. (1997). Hudson Products Corporation.steakhouse-1
%d bloggers like this: