Home » The Responses of the Antioxidant Defence System of a Legume Green Bean Phaseolus, Vulgaris, cv. Djedida Exposed to a Xenobiotic Hexaconazole

The Responses of the Antioxidant Defence System of a Legume Green Bean Phaseolus, Vulgaris, cv. Djedida Exposed to a Xenobiotic Hexaconazole

Advertisements

Bourouhou Mourad

Faculty. of Science, Laboratory Plant Biology, and Environment. Badji Mokhtar University, Annaba, Algeria
mour.bourouh@hotmail.com

Badouna Baha-Eddine*

Institute Agro-Veterinary, Taoura. Laboratory Live Science and Technology. University Mohamed Chérif Messaadia, Souk-Ahras, Algeria.
badounabaha@gmail.com

Boudelaa Mokhtar

Faculty. of Science, Laboratory Plant Biology, and Environment. Badji Mokhtar University, Annaba, Algeria
m.boudel@gmail.com

Abstract

Today, the systematic use of phytosanitary products is questioned, with the awareness of the risks they can generate for the environment and human health. Indeed, the use of high concentrations of these chemical solutions can cause considerable damage to crops and can cause simple marks visible to the naked eye (chlorotic and necrotic lesions) until the premature death of plants through a slowdown in growth and a drop in yield. Otherwise, many organic xenobiotics, among which pesticides cause a disruption of cellular metabolism and oxidative stress that, result in overproduction of ROS (Reactive oxygen species). This scientific contribution aims to verify the effect of a fungicide Hexaconazole on the agronomic parameters, yield components and biochemical indicators of oxidative stress of a legume green bean Phaseolus vulgaris L. CV. Djedida. Four doses of treatment were chosen with control, namely Dose1 (0.4ml / l), Dose2 (0.8ml / l), Dose3 (1.2ml / l) and Dose4 (1.6ml / l). The results obtained show that all the variables studied note higher yields and a stable antioxidant response for the plants treated by the low doses D1 and D2, by against lots treated with high doses the D3et D4 recorded a lower yield and a higher antioxidant stress. The dose effect is decisive and proportional to the applied level. The analysis of these mechanisms of response to oxidative stress or of the fungicide-oxidative stress interactions Can, therefore, lead to a better understanding of the processes of response to xenobiotics.

Keywords

Agronomic;
Biochemical;
Legume-fungicide;
Oxidative Stress;
Yield components.

 

download pdf

Cited as

Bourouhou Mourad, Boudouna Baha-Eddine and Boudelaa Mokhtar, “The Responses of the Antioxidant Defence System of a Legume Green Bean Phaseolus, Vulgaris, cv. Djedida Exposed to a Xenobiotic Hexaconazole”, International Journal of Advanced Engineering and Management, Vol. 2, No. 11, pp. 270-278, 2017.

DOI: https://doi.org/10.24999/IJOAEM/02110058

References

  1. Bouziani., (2007). The excessive use of pesticides. Serious health consequences. The guide of medicine and health. Health Maghreb, p 75.
  2. A. Boutaleb., (1992). Population Dynamics of Myzus persicae (Sulzer) (Homoptera: Aphididae) to Douiet (greenhouse) and highlighting of strains resistant to insecticides by colorimetric and toxicological tests. 3rd Cycle Thesis, National School of Agriculture. Meknes, 135p.
  3. P. Georghiou., (1990). Overview of pesticide resistance.In: managing resistance to Agrochemicals (Green .B., Le Baron H.M., Moberg W.R.,eds), 18p American Chemical Society , Washington DC.
  4. Liu, D., Zou, J., Meng, Q., Zou, J., & Jiang, W. (2009). Uptake and accumulation and oxidative stress in garlic (Allium sativum L.) under lead phytotoxicity. Ecotoxicology, 18(1), 134-143.
  5. Pandey, S., Gupta, K., & Mukherjee, A. K. (2007). Impact of cadmium and lead on Catharanthus roseus-A phytoremediation study. Journal of Environmental Biology28(3), 655-662.
  6. Verma, S., & Dubey, R. S. (2003). Lead toxicity induces lipid peroxidation and alters the activities of antioxidant enzymes in growing rice plants. Plant Science164(4), 645-655.
  7. Hegedüs, A., Erdei, S., & Horváth, G. (2001). Comparative studies of H 2 O 2 detoxifying enzymes in green and greening barley seedlings under cadmium stress. Plant Science160(6), 1085-1093.
  8. Patra, M., Bhowmik, N., Bandopadhyay, B., & Sharma, A. (2004). Comparison of mercury, lead and arsenic with respect to genotoxic effects on plant systems and the development of genetic tolerance. Environmental and Experimental Botany52(3), 199-223.
  9. Na, C. I., Hamayun, M., Khan, A. L., Kim, Y. H., Choi, K. I., Kang, S. M., … & Lee, I. J. (2011). Influence of prohexadione-calcium, trinexapac-ethyl and hexaconazole on lodging characteristic and gibberellin biosynthesis of rice (Oryza sativa L.). African Journal of Biotechnology10(61), 13097-13106.
  10. Senesi, N. (1993). Organic pollutant migration in soils as affected by soil organic matter. Molecular and mechanistic aspects. In Migration and fate of pollutants in soils and subsoils(pp. 47-74). Springer, Berlin, Heidelberg.
  11. Bonnemain, J. L., & Chollet, J. F. (2003). The agrochemical arsenal versus the enemies of plants. General considerations. Comptes rendus biologies326(1), 1-7.
  12. Xiao, W., Hao, H., Xiaoqing, L., Liang, C., Chao, L., Mingyu, S., & Fashui, H. (2008). Oxidative stress induced by lead in chloroplast of spinach. Biological trace element research126(1-3), 257.
  13. Sharma, P., & Dubey, R. S. (2005). Lead toxicity in plants. Brazilian journal of plant physiology17(1), 35-52.
  14. Jan, S., Parween, T., & Siddiqi, T. O. (2012). Effect of gamma radiation on morphological, biochemical, and physiological aspects of plants and plant products. Environmental Reviews20(1), 17-39.
  15. Afnor, Ø. (1982). Recueil de normes françaises des produits dérivés des fruits et légumes jus de fruits. AFNOR325.
  16. Chehelpar, N., Tohidi-Moghadam, H. R., & Ghoushchi, F. (2016). Hexaconazole foliar application alleviates water deficit effects in common bean. Pesquisa Agropecuária Tropical46(3), 301-310.
  17. Weckbecker, G., & Cory, J. G. (1988). Ribonucleotide reductase activity and growth of glutathione-depleted mouse leukemia L1210 cells in vitro. Cancer letters40(3), 257-264.
  18. Habig, W. H., Pabst, M. J., & Jakoby, W. B. (1974). Glutathione S-transferases the first enzymatic step in mercapturic acid formation. Journal of biological Chemistry249(22), 7130-7139.
  19. Hassanpour, H., Khavari-Nejad, R. A., Niknam, V., Najafi, F., & Razavi, K. (2013). Penconazole induced changes in photosynthesis, ion acquisition and protein profile of Mentha pulegium L. under drought stress. Physiology and Molecular Biology of Plants19(4), 489-498.
  20. Lakshmanan, G. M. A., Jaleel, C. A., Gomathinayagam, M., & Panneerselvam, R. (2007). Changes in antioxidant potential and sink-organ dry matter with pigment accumulation induced by hexaconazole in Plectranthus forskholii Briq. Comptes rendus biologies330(11), 814-820.
  21. Smiley, R. W., Patterson, L. M., & Rhinhart, K. E. (1996). Fungicide seed treatment effects on emergence of deeply planted winter wheat. Journal of production agriculture9(4), 564-659.
  22. S. Siddiqui., S. Ahmed., A. Zaman., 2000. L. Journal of Biological Sciences, Vol4, No.10.
  23. Siddiqui, Z. S., & Ahmed, S. (2006). Combined effects of pesticide on growth and nutritive composition of soybean plants. Pakistan Journal of Botany38(3), 721.
  24. WANG, W. Q., HAN, X. Y., ZHANG, X. F., MA, Z. Q., & LI, H. X. (2007). Selection of Fungicides in Controlling Wheat Sharp Eyespot Caused by Rhizoctonia cerealis. Acta Agriculturae Boreali-Sinica22, 230-234.
  25. Sankar, B., Jaleel, C. A., Manivannan, P., Kishorekumar, A., Somasundaram, R., & Panneerselvam, R. (2007). Effect of paclobutrazol on water stress amelioration through antioxidants and free radical scavenging enzymes in Arachis hypogaea L. Colloids and Surfaces B: Biointerfaces60(2), 229-235.
  26. Briat, J. F., & Lebrun, M. (1999). Plant responses to metal toxicity. Comptes Rendus de l’Académie des Sciences-Series III-Sciences de la Vie322(1), 43-54.
  27. Bert, V. (2000). Tolérance aux métaux lourds et accumulation chez Arabidopsis halleri (Brassicaceae)(Doctoral dissertation, Lille 1).
  28. Long, S. P., & Spence, A. K. (2013). Toward cool C4 crops. Annual Review of Plant Biology64, 701-722.
  29. El Debbagh, N. (2016). Analyse de la diversité de processus de développement racinaire chez les Prunus: aptitude au bouturage et réponses à la contrainte hydrique(Doctoral dissertation, Université d’Avignon).
  30. May, M. J., & Leaver, C. J. (1993). Oxidative stimulation of glutathione synthesis in Arabidopsis thaliana suspension cultures. Plant Physiology103(2), 621-627.
  31. Seregin, I. V., & Ivanov, V. B. (2001). Physiological aspects of cadmium and lead toxic effects on higher plants. Russian Journal of Plant Physiology48(4), 523-544.
  32. Bennett, J. P., & Buchen, M. J. (1995). Bioleff: three databases on air pollution effects on vegetation. Environmental Pollution88(3), 261-265.
  33. Patra, M., Bhowmik, N., Bandopadhyay, B., & Sharma, A. (2004). Comparison of mercury, lead and arsenic with respect to genotoxic effects on plant systems and the development of genetic tolerance. Environmental and Experimental Botany52(3), 199-223.
  34. Schützendübel, A., Schwanz, P., Teichmann, T., Gross, K., Langenfeld-Heyser, R., Godbold, D. L., & Polle, A. (2001). Cadmium-induced changes in antioxidative systems, hydrogen peroxide content, and differentiation in Scots pine roots. Plant physiology127(3), 887-898.
  35. Schützendübel, A., Nikolova, P., Rudolf, C., & Polle, A. (2002). Cadmium and H 2 O 2-induced oxidative stress in Populus× canescens roots. Plant Physiology and Biochemistry40(6), 577-584.
  36. Júnior, J. H., Zambolim, L., Aucique-Pérez, C. E., Resende, R. S., & Rodrigues, F. A. (2015). Photosynthetic and antioxidative alterations in coffee leaves caused by epoxiconazole and pyraclostrobin sprays and Hemileia vastatrix infection. Pesticide biochemistry and physiology123, 31-39.
  37. Zabalza, A., Gaston, S., Sandalio, L. M., del Río, L. A., & Royuela, M. (2007). Oxidative stress is not related to the mode of action of herbicides that inhibit acetolactate synthase. Environmental and experimental botany59(2), 150-159.
  38. Hassanpour, H., Khavari-Nejad, R. A., Niknam, V., Najafi, F., & Razavi, K. (2013). Penconazole induced changes in photosynthesis, ion acquisition and protein profile of Mentha pulegium L. under drought stress. Physiology and Molecular Biology of Plants19(4), 489-498.
  39. Kishorekumar, A., Jaleel, C. A., Manivannan, P., Sankar, B., Sridharan, R., Murali, P. V., & Panneerselvam, R. (2008). Comparative effects of different triazole compounds on antioxidant metabolism of Solenostemon rotundifolius. Colloids and Surfaces B: Biointerfaces62(2), 307-311.
  40. Jaleel, C. A., Gopi, R., Manivannan, P., & Panneerselvam, R. (2007). Antioxidative potentials as a protective mechanism in Catharanthus roseus (L.) G. Don. plants under salinity stress. Turkish Journal of Botany31(3), 245-251.
  41. Mates, J. M. (2000). Effects of antioxidant enzymes in the molecular control of reactive oxygen species toxicology. Toxicology153(1), 83-104.
  42. Basantani, M., Srivastava, A., & Sen, S. (2011). Elevated antioxidant response and induction of tau-class glutathione S-transferase after glyphosate treatment in Vigna radiata (L.) Wilczek. Pesticide biochemistry and physiology99(1), 111-117.
  43. Hassan, M. M., El-Sheikh, S. E. M., Salama, A. A., & El-Saeed, M. (2015). The effect hexaconazole on agronomic, physiological and enzymatic parameters in bean phaseolus vulgaris cv. Djedida. Advances in Environmental Biology9(22 S3), 118-129.
  44. Lakshmanan, G. M. A., Jaleel, C. A., Gomathinayagam, M., & Panneerselvam, R. (2007). Changes in antioxidant potential and sink-organ dry matter with pigment accumulation induced by hexaconazole in Plectranthus forskholii Briq. Comptes rendus biologies330(11), 814-820.
  45. M., Boudouna. B., Boudelaa. M., (2017). Impact of a Hexaconazole Fungicide on Agronomic, Biochemical Parameters and Yield Components of Green Beans PhaseolusVulgaris cv. Djedida, International Journal of Advanced Engineering and Management 2(6), 127-130.
  46. Havaux, M., Ernez, M., & Lannoye, R. (1988). Sélection de variétés de blé dur (Triticum durum Desf.) et de blé tendre (Triticum aestivum L.) adaptées à la sécheresse par la mesure de l’extinction de la fluorescence de la chlorophylle in vivo. Agronomie8(3), 193-199.
  47. Fletcher, R. A., Gilley, A., Sankhla, N., & Davis, T. D. (2010). Triazoles as plant growth regulators and stress protectants. Horticultural Reviews, Volume 24, 55-138.

steakhouse-1

Advertisements
%d bloggers like this: