Home » Current Mode Schmitt Trigger Circuit Design Using Only Single CCCDTA

Current Mode Schmitt Trigger Circuit Design Using Only Single CCCDTA


Rupam Das

Asansol Engineering College, Asansol, India

Hemanshu Kumar

Asansol Engineering College, Asansol, India

Anup Kr Giri

Asansol Engineering College, Asansol, India

Anish Prasad

Asansol Engineering College, Asansol, India



Here a simple current mode Schmitt triggers circuit is designed using a single current controlled current difference transconductance amplifier (CCCDTA). The presented circuit is proposed here by single CCCDTA without utilizing any passive components. A supply voltage of ±1v and 0.35μm TSMC CMOS model parameter is used for the design of Schmitt trigger. The circuit presented in this paper operates at a low voltage and low-frequency. The proposed circuit is tested on PSPICE platform and it meets the theoretical prediction.


Analog signal processing;
Current Mode Schmitt Trigger circuit;
Monostable multivibrator;
Schmitt Trigger circuit
Triangular waveform.

download pdf

Cited as

Rupam Das, Himanshu Kumar, Anup Kr.Giri and Anish Prasad, “Current Mode Schmitt Trigger Circuit Design Using Only Single CCCDTA”, International Journal of Advanced Engineering and Management, Vol. 2, No. 9, pp. 219-222, 2017.  DOI: https://doi.org/10.24999/IJOAEM/02090049


  1. Schmitt, O. H. (1938). A thermionic trigger. Journal of Scientific Instruments, 15(1), 24-26.
  2. Chung, W. S., Kim, H., Cha, H. W., & Kim, H. J. (2005). Triangular/square-wave generator with independently controllable frequency and amplitude. IEEE transactions on instrumentation and measurement, 54(1), 105-109.
  3. Chung, W. S., Cha, H. W., & Kim, H. J. (2002). Current-controllable monostable multivibrator using OTAs. IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications, 49(5), 703-705.
  4. Lo, Y. K., & Chien, H. C. (2007). Single OTRA-based current-mode monostable multivibrator with two triggering modes and a reduced recovery time. IET Circuits, Devices & Systems, 1(3), 257-261.
  5. Kim, H., Kim, H. J., & Chung, W. S. (2007). Pulsewidth modulation circuits using CMOS OTAs. IEEE Transactions on Circuits and Systems I: Regular Papers, 54(9), 1869-1878.
  6. Siripruchyanun, M., & Wardkein, P. (2003). A fully independently adjustable, integrable simple current controlled oscillator and derivative PWM signal generator. IEICE transactions on fundamentals of electronics, communications and computer sciences, 86(12), 3119-3126.
  7. Srinivasulu, A., Rukmini, M. S. S., Musala, S., & Prasad, S. (2014, September). Pulse width modulator based on second-generation current conveyor. In Devices, Circuits and Communications (ICDCCom), 2014 International Conference on (pp. 1-4). IEEE.
  8. Srinivasulu, A. (2009). Current conveyor-based square-wave generator with tunable grounded resistor/capacitor. In Applied Electronics, 2009. AE 2009 (pp. 233-236). IEEE.
  9. Srinivasulu, A. (2011). A novel current conveyor‐based Schmitt trigger and its application as a relaxation oscillator. International Journal of Circuit Theory and Applications, 39(6), 679-686.
  10. Kar, S. K., & Sen, S. (2011). Tunable square-wave generator for integrated sensor applications. IEEE Transactions on Instrumentation and Measurement, 60(10), 3369-3375.
  11. Network, A. O., & Cherry, E. (1970). A second-generation current conveyor and its applications. IEEE Transactions on circuit theory, 17(10), 132-4.
  12. Chiu, W., Liu, S. I., Tsao, H. W., & Chen, J. J. (1996). CMOS differential difference current conveyors and their applications. IEE Proceedings-Circuits, Devices and Systems, 143(2), 91-96.
  13. Misurec, J., & Koton, J. (2012). Schmitt trigger with controllable hysteresis using current conveyors. International Journal of Advances in Telecommunications, Electrotechnics, Signals and Systems, 1(1), 26-30.
  14. Pandey, N., Kumar, P., & Choudhary, J. (2013). Current controlled differential difference current conveyor transconductance amplifier and its application as wave active filter. ISRN Electronics, 1-11.
  15. Siripruchyanun, M., & Jaikla, W. (2008). CMOS current-controlled current differencing transconductance amplifier and applications to analog signal processing. AEU-International Journal of Electronics and Communications, 62(4), 277-287.
  16. Siripruchyanun, M., & Jaikla, W. (2008). Current controlled current conveyor transconductance amplifier (CCCCTA): a building block for analog signal processing. Electrical Engineering, 90(6), 443-453.
  17. Diutaldo, G., Palumbo, G., & Pennisi, S. (1995). A Schmitt trigger by means of a CCII+. International Journal of Circuit Theory and Applications, 23(2), 161-165.
  18. Lo, Y. K., Chien, H. C., & Chiu, H. J. (2010). Current‐input OTRA Schmitt trigger with dual hysteresis modes. International Journal of Circuit Theory and Applications, 38(7), 739-746.
  19. Biolek, D., & Biolková, V. (2006, September). Current-mode CDTA-based comparators. In The 13th electronic devices and systems 2006 IMAPS CS/SK international conference, EDS (pp. 6-10).
  20. Kim, K., Cha, H. W., & Chung, W. S. (1997). OTA-R Schmitt trigger with independently controllable threshold and output voltage levels. Electronics letters, 33(13), 1103-1105.
  21. Silapan, P., & Siripruchyanun, M. (2009, May). A simple current-mode Schmitt trigger employing only single MO-CTTA. In Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology, 2009. ECTI-CON 2009. 6th International Conference on (Vol. 1, pp. 556-559). IEEE.


%d bloggers like this: