Home » Implementation of Obstacle Detection and Avoidance Methodology for Low Cost Autonomous Vehicle

Implementation of Obstacle Detection and Avoidance Methodology for Low Cost Autonomous Vehicle

Advertisements

Prerna Rana

Dept. of ECE, NIT Arunachachal Pradesh, Yupia, India
email: prernarana2009@yahoo.com

Aman Kumar

Dept. of EE, NIT Arunachachal Pradesh, Yupia, India
email: mee.akr@gmail

Sahadev Roy

Dept. of ECE, NIT Arunachal Pradesh, India
sahadevroy@gmail.com

Abstract

The objective of this paper is to describe a low-cost autonomous robotic car which can be run without any remote control or under any human’s guidance. Robot’s main advantage is that it can replace human force in high risk and dangerous job avoiding the risk of human life. The robotic car must be designed in small size, easily operable and of course of low-cost. Along with the obstacle detection and avoidance, this can also be a source of entertainment of people of all the age groups. It’s further implication in different types of system can make it more useful. For instance, this small part can be added to the navigation system which can guide partially visually impaired persons, it can be added in an automatic wheelchair which can be used by physically handicapped persons, and it can be used for industrial purposes also where robots are used to pick and place some objects in defined places etc.

Keywords

Arduino;
DC Motors;
Obstacle avoidance;
Reactive Model;
Motor-Driver;
Robot design concept;
Ultrasonic sensor;

Cited as

Prerna Rana, Aman Kumar and Sahadev Roy, “Implementation of Obstacle Detection and Avoidance Methodology for Low-Cost Autonomous Vehicle,” International Journal of Advanced Engineering and Management, vol. 2, no. 6, pp. 135-140, 2017. DOI: https://doi.org/10.24999/IJOAEM/02060033

download pdf

References

  1. Beni, G., & Wang, J. (1993). Swarm intelligence in cellular robotic systems. Robots and Biological Systems: Towards a New Bionics?, 703-712.
  2. Camarillo, D. B., Krummel, T. M., & Salisbury, J. K. (2004). Robotic technology in surgery: past, present, and future. The American Journal of Surgery188(4), 2-15.
  3. Barea, R., Boquete, L., Mazo, M., & López, E. (2002). System for assisted mobility using eye movements based on electrooculography. IEEE transactions on neural systems and rehabilitation engineering10(4), 209-218.
  4. Hanumante, V., Roy, S., & Maity, S. (2013). Low cost obstacle avoidance robot. International Journal of Soft Computing and Engineering3(4), 52-55.
  5. Miller, D. P., & Slack, M. G. (1995). Design and testing of a low-cost robotic wheelchair prototype. Autonomous robots2(1), 77-88.
  6. Bhattacharyya, A., Roy, S., & Sarkar, A. D. (2017). Active Exoskeleton Hand Exerciser Using Multisensory Feed Back. International Journal of Advanced Engineering and Management2(2), 33-36.
  7. Qin, S. J., & Badgwell, T. A. (2003). A survey of industrial model predictive control technology. Control engineering practice11(7), 733-764.
  8. Van de Vrande, V., De Jong, J. P., Vanhaverbeke, W., & De Rochemont, M. (2009). Open innovation in SMEs: Trends, motives and management challenges. Technovation29(6), 423-437.
  9. Broadbent, E., Stafford, R., & MacDonald, B. (2009). Acceptance of healthcare robots for the older population: review and future directions. International Journal of Social Robotics1(4), 319-330.
  10. Boissy, P., Corriveau, H., Michaud, F., Labonté, D., & Royer, M. P. (2007). A qualitative study of in-home robotic telepresence for home care of community-living elderly subjects. Journal of telemedicine and telecare13(2), 79-84.
  11. Zsiga, K., Edelmayer, G., Rumeau, P., Péter, O., Tóth, A., & Fazekas, G. (2013). Home care robot for socially supporting the elderly: focus group studies in three European countries to screen user attitudes and requirements. International Journal of Rehabilitation Research36(4), 375-378.
  12. Won, J. S., & Langari, R. (2005). Intelligent energy management agent for a parallel hybrid vehicle-part II: torque distribution, charge sustenance strategies, and performance results. IEEE transactions on vehicular technology54(3), 935-953.
  13. Jian-Jun, Z., Ru-Qing, Y., Wei-Jun, Z., Xin-Hua, W., & Jun, Q. (2007). Research on semi-automatic bomb fetching for an EOD robot. International Journal of Advanced Robotic Systems4(2), 247-251.
  14. Habib, M. K., & Baudoin, Y. (2010). Robot-assisted risky intervention, search, rescue and environmental surveillance. International Journal of Advanced Robotic Systems7(1), 1-8.
  15. Srivastava, R., Kumar, N., Barnwal, A., & Singh, S. (2017). Grid Interactive Solar Powered Automated Bottling Plant Using Microcontroller. International Journal of Advanced Engineering and Management2(1), 9-14.
  16. Kumar, M., Kabir, F., & Roy, S. (2017). Low Cost Smart Stick for Blind and Partially Sighted People. International Journal of Advanced Engineering and Management2(3), 65-68.
  17. Saranli, U., Buehler, M., & Koditschek, D. E. (2001). Rhex: A simple and highly mobile hexapod robot. The International Journal of Robotics Research20(7), 616-631.
  18. Bhattacharyya, A., Roy, S., & Sarkar, A. D. (2017). Active Exoskeleton Hand Exerciser Using Multisensory Feed Back. International Journal of Advanced Engineering and Management2(2), 33-36.
  19. Akyildiz, I. F., Melodia, T., & Chowdhury, K. R. (2007). A survey on wireless multimedia sensor networks. Computer networks51(4), 921-960.
  20. Sukhadeve, V., & Roy, S. (2016). Advance Agro Farm Design With Smart Farming, Irrigation and Rain Water Harvesting Using Internet of Things. International Journal of Advanced Engineering and Management1(1), 33-45.

steakhouse-1

Advertisements
%d bloggers like this: