Home » Design of an Efficient Rectifier Circuit for RF Energy Harvesting System

Design of an Efficient Rectifier Circuit for RF Energy Harvesting System

Advertisements

Parna Kundu (Datta)

ECE, NSHM Knowledge Campus ,Durgapur

e-mail: Parna.kundu@nshm.com

Juin Acharjee

ECE, NSHM Knowledge Campus ,Durgapur

e-mail: Juin.Acharjee@nshm.com

Kaushik Mandal

Institute of Radio Physics & Electronics,Calcutta University, Kolkata

e-mail: kaushikrpe@gmail.com

Abstract

An efficient rectifier system along with an impedance matching network is proposed in this article. Impedance matching network is designed using two microstrip lines. Rectifier system for better RF to DC conversion is designed using a bridge rectifier. The proposed rectifier system provides a maximum efficiency of 50%. The impedance matching network improves the overall system performances significantly. The circuit simulator ADS 2015 is used for this system design. Performances of the proposed system are analysed using simulation results only. This proposed rectifier system along with the impedance matching network can be useful for the design of an efficient RF energy harvesting system.

Keywords

Impedance matching network and rectifier circuit; Full wave bridge rectifier; Energy converter; ADS-2015 circuit simulator; GSM 900.

pdf-1 Download PDF

 Cited as

Parna Kundu (Datta), Juin Acharjee and Kaushik Mandal, “Design of an Efficient Rectifier Circuit for RF Energy Harvesting System,” International Journal of Advanced Engineering and Management, Vol. 2, No. 4, pp. 94-97,  2017.  https://ijoaem.org/00204-24

 References

  1. Xie, F., Yang, G. M., & Geyi, W. (2013). Optimal design of an antenna array for energy harvesting. IEEE Antennas and Wireless Propagation Letters, 12, 155-158.
  2. Claps, R., Englich, F. V., Leleux, D. P., Richter, D., Tittel, F. K., & Curl, R. F. (2001). Ammonia detection by use of near-infrared diode-laser-based overtone spectroscopy. Applied Optics, 40(24), 4387-4394.
  3. Visser, H. J., & Vullers, R. J. (2013). RF energy harvesting and transport for wireless sensor network applications: Principles and requirements. Proceedings of the IEEE, 101(6), 1410-1423.
  4. Arrawatia, M., Baghini, M. S., & Kumar, G. (2016). Broadband bent triangular omnidirectional antenna for RF energy harvesting. IEEE Antennas and Wireless Propagation Letters, 15, 36-39.
  5. Taghadosi, M., Albasha, L., Qaddoumi, N., & Ali, M. (2015). Miniaturised printed elliptical nested fractal multiband antenna for energy harvesting applications. IET Microwaves, Antennas & Propagation, 9(10), 1045-1053.
  6. Ghosh, S., & Chakrabarty, A. (2016, January). Green energy harvesting from ambient RF radiation. In Microelectronics, Computing and Communications (MicroCom), 2016 International Conference on (pp. 1-4). IEEE.
  7. Olgun, U., Chen, C. C., & Volakis, J. L. (2011). Investigation of rectenna array configurations for enhanced RF power harvesting. IEEE Antennas and Wireless Propagation Letters, 10, 262-265.
  8. Brown, W. C. (1984). The history of power transmission by radio waves. IEEE Transactions on Microwave Theory and Techniques, 32(9), 1230-1242.
  9. Reddy, N. K., Hazra, A. & Sukhadeve, V. R. (2017). A Compact Elliptical Microstrip Patch Antenna for Future 5G Mobile Wireless Communication. Transactions on Engineering and Applied Sciences, 1(1), 1-4.
  10. Acharjee, J., Kumar, R. L., Mandal, K., Mandal, S. K. (2017). Design of Matched Printed Monopole Antenna with Enhanced Bandwidth for GSM900 Band Application. Transactions on Engineering and Applied Sciences, 1(1), 5-8.
  11. Karthaus, U., & Fischer, M. (2003). Fully integrated passive UHF RFID transponder IC with 16.7-/spl mu/W minimum RF input power. IEEE Journal of Solid-State Circuits, 38(10), 1602-1608.
  12. Costanzo, A., Romani, A., Masotti, D., Arbizzani, N., & Rizzoli, V. (2012). RF/baseband co-design of switching receivers for multiband microwave energy harvesting. Sensors and Actuators A: Physical, 179, 158-168.
  13. Rizzoli, V., Costanzo, A., Masotti, D., & Donzelli, F. (2010). Integration of numerical and field-theoretical techniques in the design of single-and multi-band rectennas for micro-power generation. International Journal of Microwave and Wireless Technologies, 2(3-4), 293-303.
  14. McSpadden, J. O., Fan, L., & Chang, K. (1998). Design and experiments of a high-conversion-efficiency 5.8-GHz rectenna. IEEE Transactions on Microwave Theory and Techniques, 46(12), 2053-2060.
  15. Popovic, Z., Korhummel, S., Dunbar, S., Scheeler, R., Dolgov, A., Zane, R., & Hagerty, J. (2014). Scalable RF energy harvesting. IEEE Transactions on Microwave Theory and Techniques, 62(4), 1046-1056.

 

steakhouse-1

Advertisements
%d bloggers like this: