Home » Prospect of GNR as Channel Material for Tunnel Field Effect Transistor

Prospect of GNR as Channel Material for Tunnel Field Effect Transistor

Advertisements

Jayabrata Goswami

Institute of Radio Physics and Electronics, University of Calcutta, Kolkata, India
e-mail:goswamijayabrata@gmail.com

Anuva Ganguly

Institute of Radio Physics and Electronics, University of Calcutta, Kolkata, India
e-mail:gangulyanuva@gmail.com

Anirudhha Ghosal

Institute of Radio Physics and Electronics, University of Calcutta, Kolkata, India
e-mail: aghosal2008@gmail.com

J.P. Banerjee

Institute of Radio Physics and Electronics, University of Calcutta, Kolkata, India
e-mail:scope.jcb@gmail.com

Abstract

The design and simulation of a P-Channel Tunnel Field Effect Transistors (TFETs) with Graphene Nanoribbon (GNR) as channel material is carried out to achieve low sub-threshold swing and high on-off current ratio from the device. A self-consistent iterative method is used to solve one-dimensional Poisson equation subject to appropriate boundary conditions and obtain the energy band diagram. The drain current is calculated from the energy dependent tunneling probability and Fermi functions at the source and drain regions. The channel length, ribbon width and gate oxide thickness of the device are appropriately designed to achieve high performance from the device. It is observed that the optimized device provides high ON-OFF current ratio (6.5×104 ) and low sub-threshold swing (8mV/decade), for a channel length of 20 nm and channel width of 4 nm.

Keywords

GNR, TFET, Sub-threshold swing, ON/OFF Current ratio,

pdf-1 Download Full PDF

Cited as

Jayabrata Goswami, Anuva Ganguly, Anirudhha Ghosal and J.P. Banerjee, “Prospect of GNR as Channel Material for Tunnel Field Effect Transistor,” International Journal of Advanced Engineering and Management, vol. 2, no. 4, pp. 90-93,  2017. https://ijoaem.org/00204-22

 References

  1. Appenzeller, J., Lin, Y. M., Knoch, J., & Avouris, P. (2004). Band-to-band tunneling in carbon nanotube field-effect transistors. Physical review letters, 93(19), 196805.
  2. Wang, P. F., Hilsenbeck, K., Nirschl, T., Oswald, M., Stepper, C., Weis, M., & Hansch, W. (2004). Complementary tunneling transistor for low power application. Solid-State Electronics, 48(12), 2281-2286.
  3. Toh, E. H., Wang, G. H., Samudra, G., & Yeo, Y. C. (2008). Device physics and design of germanium tunneling field-effect transistor with source and drain engineering for low power and high performance applications. Journal of Applied Physics, 103(10), 104504.
  4. Leem, L., Srivastava, A., Li, S., Magyari-Köpe, B., Iannaccone, G., Harris, J. S., & Fiori, G. (2010, December). Multi-scale simulation of partially unzipped CNT hetero-junction tunneling field effect transistor. In Electron Devices Meeting (IEDM), 2010 IEEE International (pp. 32-5). IEEE.
  5. Morozov, S. V., Novoselov, K. S., Katsnelson, M. I., Schedin, F., Elias, D. C., Jaszczak, J. A., & Geim, A. K. (2008). Giant intrinsic carrier mobilities in graphene and its bilayer. Physical review letters, 100(1), 016602.
  6. Fiori, G., & Iannaccone, G. (2009). Ultralow-voltage bilayer graphene tunnel FET. IEEE Electron Device Letters, 30(10), 1096-1098.
  7. Fang, J., Vandenberghe, W. G., & Fischetti, M. V. (2016). Microscopic dielectric permittivities of graphene nanoribbons and graphene. Physical Review B, 94(4), 045318.
  8. Appenzeller, J., Knoch, J., Bjork, M. T., Riel, H., Schmid, H., & Riess, W. (2008). Toward nanowire electronics. IEEE Transactions on electron devices, 55(11), 2827-2845.
  9. Yan, R. H., Ourmazd, A., & Lee, K. F. (1992). Scaling the Si MOSFET: From bulk to SOI to bulk. IEEE Transactions on Electron Devices, 39(7), 1704-1710.
  10. Yan, R. H., Ourmazd, A., & Lee, K. F. (1992). Scaling the Si MOSFET: From bulk to SOI to bulk. IEEE Transactions on Electron Devices, 39(7), 1704-1710.
  11. Fahad, M. S., Srivastava, A., Sharma, A. K., & Mayberry, C. (2016). Analytical current transport modeling of graphene nanoribbon tunnel field-effect transistors for digital circuit design. IEEE Transactions on Nanotechnology, 15(1), 39-50.
  12. Sze, S. M. (1981). Physics of semiconductor devices. New York: John Wi-ley & Sons.
  13. Barboni, L., Siniscalchi, M., & Sensale-Rodriguez, B. (2015). TFET-based circuit design using the transconductance generation efficiency gm/Id Method method. IEEE Journal of the Electron Devices Society, 3(3), 208-216.

steakhouse-1

Advertisements
%d bloggers like this: