Home » Video Inpainting Using a Contour-based Method in Presence of More than One Moving Objects

Video Inpainting Using a Contour-based Method in Presence of More than One Moving Objects

Advertisements

A. Ghanbari Talouki, M. Majdi and S. A. Edalatpanahoy

Dept. of Computer Engineering, Ayandegan Institute of higher education, Tonekabon, Mazandaran, Iran
e-mail: saedalatpanah@gmail.com

Abstract

To restore corrupted images and video frames, a technique named inpainting or completion is used. This paper introduces an approach which is used to inpaint damaged objects in video frames. These objects are damaged whether partially or totally. In order to get to a more visually pleasant result, the moving objects and the background are separated from each other. To inpaint the stationary background, a patch-based method is used. Missing moving objects are inpainted using an object-based method with the help of a contour-based method. Presence of more than one moving object makes a problem; how to separate the goal object from other moving objects. This paper proposes a new method based on contour to solve this problem. Finally, the inpainted foreground and background are superimposed; the result is the inpainted video.

Keywords

Video inpainting, contour, moving objects separation, similarity measure.

pdf-1Full Paper Download

Cited as

A. Ghanbari Talouki, M. Majdi and S. A. Edalatpanahoy, “Video Inpainting Using a Contour-based Method in Presence of More than One Moving Objects,” International Journal of Advanced Engineering and Management, vol. 2, no. 2, pp. 37-44,  2017. https://ijoaem.org/00202-03

 DOI: https://doi.org/10.24999/IJOAEM/02020013

References

  1. S. B. Satpute, S. D. Gadge and G. T. Kadnar, “Super Resoloution-based Image with Video Inpainting,”International Journal of Engineering Science & Research Technology, vol. 4 no. 10, pp. 202-205, 2015.
  2. Y. Wexler, E. Shechtman, M. Irani, “Space-Time Completion of Video,” IEEE Trans. Pattern Analysis Machine Intelligence, vol. 29, no. 3, pp. 463-476, 2007. https://doi.org/10.1109/tpami.2007.60
  3. B. P. Tejasvee, R. Dhar, P. P. Rajasvee and P.B. Jawalkar, “Video Inpainting Using Image Inpainting, International” Journal of Computer Science and Mobile Computing, vol. 4, no.10, pp. 105-110, 2015.
  4. M. Bertalmio, A.L. Bertozzi, G. Sapiro, “Navier-Stokes, Fluid Dynamics, and Image and Video Inpainting,” Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. CVPR 2001, vol. 1, pp. 355-362, 2001. https://doi.org/10.1109/cvpr.2001.990497
  5. A. Pawar and A. P. Phatale, “A Effective Way to Modify Video for Deleting Forground Object from Background Using Exemplar Based Inpainting Method,” International Journalof Engineering Science & Research Technology, vol. 5, no. 2, pp. 346-356, 2016.
  6. T. K. Shih, N. C. Tang and J. N. Hwang, “Exemplar-Based Video Inpainting Without Ghost Shadow Artifacts by Maintaining Temporal Continuity,” IEEE Transactions on Circuits and Systems for Video Technology vol. 13, no. 3, pp. 347-360, 2009. https://doi.org/10.1109/tcsvt.2009.2013519
  7. M. Soryani, A. Ghanbari and A. Koochari “Dynamic Video Texture Inpainting Using Improving LDS,” British Journal of Mathematics & Computer Science, vol. 4, no. 20, pp. 2872-2883, 2014. https://doi.org/10.9734/bjmcs/2014/4751
  8. M. Singh and E. S. Baghla, “A Review on Object Removal Using Examplar Based Image Impainting Technique,” International Journal of Engineering Science & Research Technology, vol. 4, no. 6, pp. 472-475, 2015.
  9. Y. K. Zakir, R. Prajot, K. Krishna and K. Anish, “A Hierarchical Super Resoloution based Video Inpainting Tool,” Internation Journal of Advance Research And Innovative Ideas In Education, vol. 2, no. 2, pp. 236-240, 2016.
  10. R. T. Vinod and N. M Nitiket, “An Intelligent Video Repairing Approach Using Object Inpainting: A Review,” Internationl Journal of Research in Advent Technology, vol.4, no. 3, pp. 236-240, 2016.
  11. M. V. Venkatesh, S. S. Cheung and J. Zhao, “Efficient Object-Based Video Inpainting”, Journal of Pattern Recognition Letters, vol. 30, no. 2, pp. 168-179, 2009.
    https://doi.org/10.1016/j.patrec.2008.03.011
  12. S. Cheung, J. Zhao and M. Venkatesh, “Efficient Object-Based Video Inpainting,” International Conference on Image Processing, pp. 705–708, 2006. https://doi.org/10.1109/icip.2006.312432
  13. Y. Zhang, J. Xiao and M. Shah, “Motion Layer Based Object Removal in Videos,” Seventh IEEE Workshops on Applications of Computer Vision (WACV/MOTION’05),
    vol. 1, pp. 516-521, 2005. https://doi.org/10.1109/acvmot.2005.75
  14. M. Bertalmio, G. Sapiro, C. Ballester and V. Caselles, “Image Inpainting,” Proceedings of the 27th annual conference on Computer graphics and interactive
    techniques – SIGGRAPH ’00, pp. 417-424, 2000. https://doi.org/10.1145/344779.344972
  15. T. Siratori, Y. Matsushita, S. B. Kang, X. Tang, “Video Completion by Motion Field Transfer,” IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’06), vol. 1, pp. 411-418, 2006. https://doi.org/10.1109/cvpr.2006.330
  16. C. R. Wren, A. Azarbayejani, T. Darrell and A. P. Pentland, “Pfinder: Real-time Tracking of the Human Body”, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 19, no. 7, pp. 780-785, 1997. https://doi.org/10.1109/34.598236
  17. Z. Zivkovic, “Improved Adaptive Gaussian Mixture Model for Background Subtraction”, Proceedings of the 17th International Conference on Pattern Recognition, 2004. ICPR 2004, vol. 2, pp. 28-31, 2004. https://doi.org/10.1109/icpr.2004.1333992
  18. N. C. Tang, H. Y. M. Liao, C. W. Su, F. Huang and T. K. Shih, “Video Inpainting on Digitized Old Films”, Lecture Notes in Computer Science, vol. 5712, pp.421-430, 2009. https://doi.org/10.1109/tmm.2011.2112642
  19. A. Ghanbari and M. Soryani, “Contour-Based Video Inpainting,” 7th Iranian Conference on Machine Vision and Image Processing, pp. 1-5, 2011. https://doi.org/10.1109/iranianmvip.2011.6121586
  20. C. H. Ling, C. W. Lin, C. W. Su, H. Liao, Y. Chen, “Video Object Inpainting Using Posture Mapping”, 16th IEEE International Conference on Image Processing (ICIP), vol. 10, pp. 2785-2788, 2009. https://doi.org/10.1109/icip.2009.5414183

steakhouse-1

Advertisements

Leave a Reply

Please log in using one of these methods to post your comment:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Google+ photo

You are commenting using your Google+ account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

w

Connecting to %s

%d bloggers like this: